54 research outputs found

    Design for Children’s Playful Learning with Robots

    Get PDF
    This article presents an investigation of the implications of designing for children’s playful learning with robots. This study was carried out by adopting a Research through Design approach that resulted in the development of a novel low-anthropomorphic robot called Shybo. The article reports the main phases of the project: the preliminary and exploratory research that was carried out to define a list of design requirements; the design of the robot and its supplementary materials for carrying out playful learning experiences; and the evaluation of the project that involved both parents and children. The robot, in fact, was finally tested as part of a two-hour experience that engaged children in activities related to the associations between sounds and colours. The article presents and discusses the results of this evaluation to point out positive aspects of the experience, emerging issues and hints for future works. These are documented to share lessons learned that might be supportive of the general development of children’s playful learning and cognitive experiences with robots

    RoboTable: An Infrastructure for Intuitive Interaction with Mobile Robots in a Mixed-Reality Environment

    Get PDF
    This paper presents the design, development, and testing of a tabletop interface called RoboTable, which is an infrastructure supporting intuitive interaction with both mobile robots and virtual components in a mixed-reality environment. With a flexible software toolkit and specifically developed robots, the platform enables various modes of interaction with mobile robots. Using this platform, prototype applications are developed for two different application domains: RoboPong investigates the efficiency of the RoboTable system in game applications, and ExploreRobot explores the possibility of using robots and intuitive interaction to enhance learning

    Zinc oxide nanoparticles enhanced rice yield, quality, and zinc content of edible grain fraction synergistically

    Get PDF
    Zinc oxide nanoparticles (ZnO NPs) have been widely used in agriculture as a new type of Zn fertilizer, and many studies were conducted to evaluate the effect of ZnO NPs on plant growth. However, there are relatively few studies on the effects of application methods and appropriate dosages of ZnO NPs on rice yield, quality, grain Zn content, and distribution. Therefore, in the 2019 and 2020, field trials were conducted with six ZnO NPs basal application dosages of no ZnO NPs, 3.75 kg hm−2, 7.5 kg hm−2, 15 kg hm−2, 30 kg hm−2, and 60 kg hm−2, and the effects of ZnO NPs application on rice yield, quality, grain Zn content, and distribution were investigated. The results demonstrated that applying ZnO NPs in Zn-deficient soils (available Zn < 1.0 mg kg−1) increased rice grain yield by 3.24%–4.86% and 3.51%–5.12% in 2019 and 2020, respectively. In addition, ZnO NPs improved the quality of rice by increasing the head milling rate, reducing chalky grain percentage, and increasing the taste value and breakdown of rice. In terms of Zn accumulation in rice, ZnO NPs application significantly increased the Zn content in both milled rice and brown rice, compared with no Zn treatment, in 2019 and 2020, Zn content in milled rice significantly increased by 20.46%–41.09% and 18.11%–38.84%, respectively, and in brown rice significantly increased by 25.78%–48.30% and 20.86%–42.00%, respectively. However, the Zn fertilizer utilization gradually decreased with increasing ZnO NPs application dosage. From the perspective of yield, rice quality, Zn fertilizer utilization, and Zn accumulation, basal application of 7.5 kg–30 kg hm−2 ZnO NPs is beneficial for rice yield and quality improvement and rice Zn accumulation. This study effectively demonstrated that ZnO NPs could be a potential high‐performed fertilizer for enhancing rice yield, quality, and zinc content of edible grain fraction synergistically

    Chitin-based Materials in Tissue Engineering: Applications in Soft Tissue and Epithelial Organ

    Get PDF
    Chitin-based materials and their derivatives are receiving increased attention in tissue engineering because of their unique and appealing biological properties. In this review, we summarize the biomedical potential of chitin-based materials, specifically focusing on chitosan, in tissue engineering approaches for epithelial and soft tissues. Both types of tissues play an important role in supporting anatomical structures and physiological functions. Because of the attractive features of chitin-based materials, many characteristics beneficial to tissue regeneration including the preservation of cellular phenotype, binding and enhancement of bioactive factors, control of gene expression, and synthesis and deposition of tissue-specific extracellular matrix are well-regulated by chitin-based scaffolds. These scaffolds can be used in repairing body surface linings, reconstructing tissue structures, regenerating connective tissue, and supporting nerve and vascular growth and connection. The novel use of these scaffolds in promoting the regeneration of various tissues originating from the epithelium and soft tissue demonstrates that these chitin-based materials have versatile properties and functionality and serve as promising substrates for a great number of future applications

    66m Under

    No full text

    Tangible Tetris

    No full text

    Chinese chi 2018 workshop

    No full text
    The extended abstract describes the background, goals and organization of the sixth International Workshop of Chinese CHI (Chinese CHI 2018

    A video-based assessment of likeability and usability in a play application of robots for children

    No full text
    Purpose: The purpose of this paper is to conduct research with children, who have different abilities from adults, in terms of language understanding and level of attention, is a challenging task, especially concerning novel interactive systems such as social robots. Consequently, self-reporting methods are often replaced or supplemented by observational methods that are usually carried out taking advantage of video recordings. However, some limitations make this approach challenging for studies conducted with groups of children in real-world environments, whose relevance is being addressed more and more frequently in human-robot interaction (HRI) research. Thus, there is a growing need for rigorous observation approaches in unstructured test environments. Design/methodology/approach: This paper presents an alternative analysis approach, in relation to an experimental child-robot interaction (CRI) application, which was developed at the Academy of Arts and Design, Tsinghua University, China. The proposed methodology is based on the analysis of video recordings of in-wild activities of children with a robot. The methodology has the aim of providing a framework to facilitate knowledge identification and structuring. It was implemented for experiment evaluation and validation purposes and to propose a reference structure for the organization of new experiments and the stimulation of new ideas and activities in the design process. Findings: This methodology provides a logical structure, which can be used to identify the effectiveness or limits of design choices, pertaining to such aspects as the morphology or movement of robots or the choice of their specific role in education, all of which play crucial roles in the design process and could be improved to achieve better results. This structured identification is a practical implication for the design process, above all when it is oriented toward social robots and their interaction with children or elderly senile people. In this case, the outcomes were the identification of important elements of an experiment (psychological profiles of the involved children and possible problems or risks) and their impact on the design process. Originality/value: The methodological approach, which structures and uses cognitive maps to elaborate multicriteria evaluation models, is not new to the operations research field (where it is defined as a multimethodology application of Soft OR), but it has not yet been applied in the field of HRI studies, to analyze children’s perception of a robot and to identify the factors that can affect a good CRI or to structure knowledge that can be shared to guide the design process of robots for the experience of children playing.</p

    A scenario-driven design method for Chinese children edutainment

    No full text
    This paper presents the use of design scenarios as a valid method for helping designers to face the challenges they are presented with when designing edutainment technologies for children. This tool is proposed as effective for exploring emerging design spaces and enables work oriented discussions among practitioners. In order to obtain data for identifying design drivers and variables that are used in developing the construction of the scenarios, a preliminary survey was conducted. This was meant as an investigation of parents' expectations towards the act of play and their children's play habits

    A video-based assessment of likeability and usability in a play application of robots for children

    No full text
    Purpose: The purpose of this paper is to conduct research with children, who have different abilities from adults, in terms of language understanding and level of attention, is a challenging task, especially concerning novel interactive systems such as social robots. Consequently, self-reporting methods are often replaced or supplemented by observational methods that are usually carried out taking advantage of video recordings. However, some limitations make this approach challenging for studies conducted with groups of children in real-world environments, whose relevance is being addressed more and more frequently in human-robot interaction (HRI) research. Thus, there is a growing need for rigorous observation approaches in unstructured test environments. Design/methodology/approach: This paper presents an alternative analysis approach, in relation to an experimental child-robot interaction (CRI) application, which was developed at the Academy of Arts and Design, Tsinghua University, China. The proposed methodology is based on the analysis of video recordings of in-wild activities of children with a robot. The methodology has the aim of providing a framework to facilitate knowledge identification and structuring. It was implemented for experiment evaluation and validation purposes and to propose a reference structure for the organization of new experiments and the stimulation of new ideas and activities in the design process. Findings: This methodology provides a logical structure, which can be used to identify the effectiveness or limits of design choices, pertaining to such aspects as the morphology or movement of robots or the choice of their specific role in education, all of which play crucial roles in the design process and could be improved to achieve better results. This structured identification is a practical implication for the design process, above all when it is oriented toward social robots and their interaction with children or elderly senile people. In this case, the outcomes were the identification of important elements of an experiment (psychological profiles of the involved children and possible problems or risks) and their impact on the design process. Originality/value: The methodological approach, which structures and uses cognitive maps to elaborate multicriteria evaluation models, is not new to the operations research field (where it is defined as a multimethodology application of Soft OR), but it has not yet been applied in the field of HRI studies, to analyze children’s perception of a robot and to identify the factors that can affect a good CRI or to structure knowledge that can be shared to guide the design process of robots for the experience of children playing
    corecore